

Cambridge IGCSE[™]

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/42

Paper 4 Theory (Extended)

February/March 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

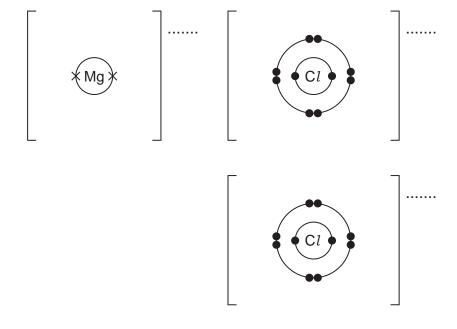
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

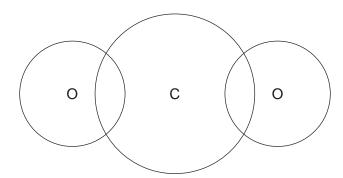
Ihi	s question is about the first 30 elements in the Periodic Table.	
Nar	me the element which:	
(a)	is 78% of clean, dry air	[1]
(b)	has atoms with an electronic structure of 2,8,1	[1]
(c)	is extracted from hematite	[1]
(d)	forms an oxide with a giant covalent structure	[1]
(e)	is the gas with the slowest rate of diffusion at room temperature	
		[1]
(f)	has an anhydrous chloride which turns pink when water is added	[1]
(g)	has aqueous ions which form a white precipitate when added to aqueous silver ions	[1]
(h)	forms a blue hydroxide which dissolves in aqueous ammonia	.[1]
(i)	is added to molten iron to remove impurities in the steel making process	[4]
		[1]
(j)	is used to galvanise iron.	[1]
	[Total:	101


- **2** A student adds excess large pieces of magnesium carbonate, MgCO₃, to dilute hydrochloric acid, HC*l*, and measures the volume of carbon dioxide gas, CO₂, given off.
 - (a) Add the missing state symbols to the chemical equation for the reaction.

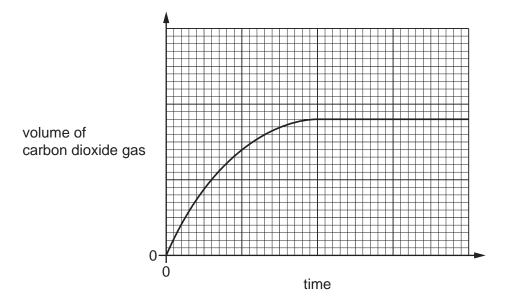
$$MgCO_3 + 2HCl..... \rightarrow MgCl_2(aq) + H_2O + CO_2$$
 [1]

(b) Complete the dot-and-cross diagram to show the electron arrangement of the ions in magnesium chloride.

The inner shells have been drawn.


Give the charges on the ions.

[3]


(c) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of carbon dioxide.

Show outer shell electrons only.

[2]

(d) The graph shows how the volume of carbon dioxide gas changes with time.

(i)	Describe how the graph shows that the rate of this reaction decreases as time increases.
	[1]
(ii)	Explain, in terms of particles, why the rate of this reaction decreases as time increases.

(iii) The student repeats the experiment using powdered MgCO₃ instead of large pieces.

All other conditions stay the same.

On the grid, draw the line expected when powdered $MgCO_3$ is used instead of large pieces. [2]

(e)	Determine the	volume	of CO ₂	gas	given	off	when	excess	MgCO ₃	is	added	to	$25.0\mathrm{cm}^3$	of
	0.400mol/dm^3	HC1 at ro	om tem	pera	iture a	nd p	oressu	re.						

$$\mathrm{MgCO_3} \ + \ 2\mathrm{HC}\mathit{l} \ \rightarrow \ \mathrm{MgC}\mathit{l}_2 \ + \ \mathrm{H_2O} \ + \ \mathrm{CO_2}$$

Use the following steps.

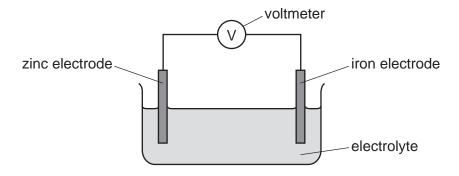
• Calculate the number of moles of HCl in 25.0 cm³ of 0.400 mol/dm³ of acid.

..... mol

• Determine the number of moles of CO₂ gas given off.

..... mol

• Calculate the volume of CO₂ gas given off in cm³.

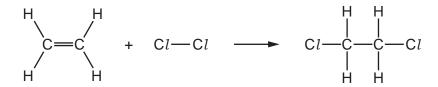

..... cm³

[Total: 14]

Nitr	rogei	n dioxide, NO ₂ , is an atmospheric pollutant and is formed in car engines.	
(a)	Exp	olain how nitrogen dioxide is formed in car engines.	
/ls.\	N 1:4		
(a)		rogen dioxide causes respiratory problems.	
	Sta	te one other adverse effect of nitrogen dioxide.	
			[1]
(c)		rogen dioxide emissions can be reduced by adding an aqueous solution of urea, (NH_2 car exhaust gases.) ₂ CO,
	The	e heat of the exhaust gases breaks down the urea into simpler substances.	
	(i)	Name the type of reaction which occurs when a substance is heated and breaks dow simpler substances.	n into
			[1]
	(ii)	One molecule of urea breaks down to form one molecule of ammonia and one molecule.	other
		Complete the chemical equation to show the formula of the other molecule formed i reaction.	n this
		$(NH_2)_2CO \rightarrow NH_3 + \dots$	[1]
	(iii)	State the test for ammonia.	
		test	
		observations	
			[2]
(d)	The	e ammonia formed reacts with nitrogen dioxide to form nitrogen and water.	
	(i)	Balance the equation for this reaction.	
		$NO_2 +NH_3 \rightarrowN_2 + 12H_2O$	[2]
	(ii)	State how the equation shows that the nitrogen in nitrogen dioxide is reduced.	
			[1]

	(iii)	This reaction is a redox reaction.
		State the meaning of the term <i>redox</i> .
		[1]
(e)	135	5 moles of urea, $(NH_2)_2CO$, is stored in the tank of a car.
	Cal	culate the mass, in kg, of the stored $(NH_2)_2CO$.
		mass of $(NH_2)_2CO =kg$ [2]
(f)	rem	other oxide of nitrogen formed in car engines is nitrogen monoxide, NO. A catalytic converter noves NO by reacting it with a gas formed by incomplete combustion of the fuel. Two n-toxic gases are formed.
	(i)	Name the gas formed by incomplete combustion of the fuel.
		[1]
	(ii)	Name the two non-toxic gases formed.
		and [1]
		[Total: 15]

- 4 This question is about chemical reactions and electricity.
 - (a) The diagram shows the apparatus used in the production of electrical energy in a simple cell.


The zinc electrode dissolves in the electrolyte forming Zn²⁺(aq) ions.

	(i)	Draw an arrow on the diagram to show the direction of electron flow.	[1]
	(ii)	Write the ionic half-equation for the reaction that occurs when the zinc electrode dissolve	es.
			[2]
(b)	The met	reading on the voltmeter can be increased if either zinc or iron is replaced by anothal.	ıer
	(i)	Name a metal that can replace zinc and increase the reading on the voltmeter.	
			[1]
	(ii)	Name a metal that can replace iron and increase the reading on the voltmeter.	
			[1]
(c)	Fue	l cells are used to generate electricity.	
	(i)	Name the reactants in a fuel cell.	
			[1]
	(ii)	Name the waste product of a fuel cell.	
			[1]

(d)	Ele	ctricity can be used to break down aqueous or molten ionic compounds.
	(i)	Name the process which uses electricity to break down aqueous or molten ionic compounds.
		[1]
	(ii)	Explain why the ionic compound needs to be aqueous or molten.
		[1]
(e)	Brir	ne is concentrated aqueous sodium chloride.
	(i)	Name three substances which are manufactured by passing electricity through brine.
		1
		2
		3[3]
	(ii)	Name a different substance formed when molten sodium chloride is used instead of concentrated aqueous sodium chloride.
		[1]
		[Total: 13]

This	s qu	estion is about alkanes and alkenes.
(a)	Sho	ort-chain alkanes and alkenes can be formed from long-chain alkanes in a chemical reaction.
	(i)	Name the type of chemical reaction which forms short-chain alkanes and alkenes from long-chain alkanes.
		[1]
	(ii)	Decane has 10 carbon atoms. It forms ethane and ethene as the only products in this type of chemical reaction.
		Write the chemical equation for this reaction.
		[3]
(b)		ane reacts with chlorine at room temperature to form chloroethane, $\rm C_2H_5C\it l$, and one other duct.
	(i)	Name the other product formed.
		[1]
	(ii)	State the condition needed for this reaction to take place.
		[1]
(c)	Eth	ene reacts with chlorine at room temperature to form dichloroethane, $C_2H_4Cl_2$.
		$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$
	(i)	State why this is an addition reaction.
		[1]

(ii) The chemical equation for this reaction can be represented as shown.

The energy change for the reaction is –180 kJ/mol.

Use the bond energies in the table to calculate the bond energy of a C–Cl bond, in kJ/mol.

bond	C–H	C=C	Cl-Cl	C–C
bond energy in kJ/mol	410	610	240	350

Use the following steps.

step 1 Calculate the energy needed to break bonds.

energy needed to break bonds =kJ

step 2 Use your answer in **step 1** and the energy change for the reaction to determine the energy released when bonds are formed.

energy released when bonds form =kJ

step 3 Use your answer in **step 2** and bond energy values to determine the energy of a C–C*l* bond.

bond energy of a C–Cl bond =kJ/mol [4]

[Total: 11]

6 The names of four esters are listed.

methyl propanoate ethyl propanoate propyl propanoate butyl propanoate

		butyi propanoate	
(a)		ers are a family of organic compounds with similar chemical properties. They can resented by the formula $C_nH_{2n}O_2$.	be
	(i)	State the name given to a family of organic compounds with similar chemical properties	₽S.
			[1]
	(ii)	Explain why members of a family of organic compounds have similar chemical properti	es.
			[1]
	(iii)	State the name given to a formula such as $C_nH_{2n}O_2$.	
			[1]
	(iv)	Determine the value of 'n' in butyl propanoate.	
			[1]
(b)	All 1	four of the esters in the list are liquids at room temperature.	
	Nar	me the technique used to separate ethyl propanoate from a mixture of the four esters.	
			[2]
(c)	All 1	four esters can be made by reacting different alcohols with the same substance.	
	(i)	Name this substance and draw its structure. Show all of the atoms and all of the bonds	S.
		name	
		structure	
			[2]
	(ii)	Name the alcohol used to make methyl propanoate.	_
			[1]

(d)		ner esters, not in the list, have the same molecular formula as propyl propanoate, but differer actures.	nt
	(i)	State the term used to describe substances with the same molecular formula but different structures.	nt
		[1]
	(ii)	Name two esters with the same molecular formula as propyl propanoate.	
		1	
		2	
		L ⁴	2]
(e)	Pol	yesters can be made from the two different molecules shown.	
		н—о—с———с—о—н	
		and	
		н—о———о—н	
	(i)	Complete the diagram to show a section of the polyester made from these two molecules include all of the atoms and all of the bonds in the linkages.	3.
		[3	3]
	(ii)	Name the type of polymerisation that takes place when this polymer forms.	
		[1]
((iii)	Name a polyester.	
		[1]
		[Total: 17	7]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

 	z He	helium 4	10	Se	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
=			o I	L	fluorine 19	17	Cl	chlorine 35.5	35	南	bromine 80	53	П	iodine 127	85	Ąŧ	astatine -			
5			∞ (0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	nolonium	116		/ermorium -
>								"0												=
2																		114	Εl	erovium
																				=
								 ਜੁਲ										112	ت د	copernicium —
																				Ē
]																	Ε
	- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	H	hassium
									25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
				00	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
		Key	tomic number	mic syml	name tive atomic ma				23	>	vanadium 51	41	g	niobium 93	73	ā	tantalum 181	105	g C	dubnium
			, as	ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	<u>₹</u>	rutherfordium -
						,			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
_			ო :		lithium 7	1	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	ь Г	francium -
				II	II	II	II	II	III IV VI VII	II	III IV VI VII VII	II	II	III	III IV V VI VI VI VI VI	II	III IV V VI VII VI	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1

		_			
r Lu	lutetium 175	103	۲	lawrencium	ı
°	ytterbium 173	102	%	nobelium	ı
ee Tm	thulium 169	101	Md	mendelevium	ı
88 Fr	erbium 167	100	Fm	ferminm	ı
67 H0	holmium 165	66	Es	einsteinium	ı
° ^	dysprosium 163	86	ŭ	californium	1
65 Tb	terbium 159	97	Ř	berkelium	1
Gd 64	gadolinium 157	96	Cm	curium	1
e3 Eu	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	ı
Pm	promethium	93	ď	neptunium	1
。 9 P	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
C 28	cerium 140	06	H	thorium	232
57 La	lanthanum 139	88	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).